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Dynamic Transbilayer Lipid Asymmetry
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Cells have thousands of different lipids. In the plasma membrane, and in membranes of the
late secretory and endocytotic pathways, these lipids are not evenly distributed over the two
leaflets of the lipid bilayer. The basis for this transmembrane lipid asymmetry lies in the fact
that glycerolipids are primarily synthesized on the cytosolic and sphingolipids on the non-
cytosolic surface of cellular membranes, that cholesterol has a higher affinity for sphingo-
lipids than for glycerolipids. In addition, P4-ATPases, “flippases,” actively translocate the
aminophospholipids phosphatidylserine and phosphatidylethanolamine to the cytosolic
surface. ABC transporters translocate lipids in the opposite direction but they generally act
as exporters rather than “floppases.” The steady state asymmetryof the lipids can be disrupted
within seconds by the activation of phospholipases and scramblases. The asymmetric lipid
distribution has multiple implications for physiological events at the membrane surface.
Moreover, the active translocation also contributes to the generation of curvature in the
budding of transport vesicles.

A lipid bilayer consisting of phosphatidyl-
choline (PC) with one saturated and one

unsaturated acyl chain is stable, flexible, and
semipermeable. It is the simplest model of a
biomembrane. In such membranes, PC with a
spin label on its choline headgroup diffused
rapidly in the plane of the membrane with a dif-
fusion coefficient of 1.8 mm2/sec (Devaux and
McConnell 1972). In contrast, PC movement
between leaflets, “flip-flop,” was slow with a
half-time of .6 h at 308C (Kornberg and
McConnell 1971). Similar half-times for PC
flip-flop were measured in erythrocyte mem-
branes, a mammalian plasma membrane with
a complex lipid composition (Rousselet et al.
1976; Renooij and Van Golde 1977; van Meer
et al. 1980). Interestingly, the erythrocyte

membrane maintains an asymmetric lipid dis-
tribution across the lipid bilayer with all of
its phosphatidylserine (PS) and most of its
phosphatidylethanolamine (PE) in the cyto-
solic leaflet (Bretscher 1972; Verkleij et al.
1973). A critical discussion of these early data
and the techniques used can be found in (Op
den Kamp 1979).

It was then observed that the enrichment of
aminophospholipids in the cytosolic leaflet is
maintained by an ATP-consuming translocator
that flips these lipids from the outer leaflet
across the lipid bilayer (Seigneuret and Devaux
1984). The flippase was later identified as a
P4-ATPase (Tang et al. 1996; Soupene and
Kuypers 2006). Around the same time it was
found that an ABC transporter, ABCB4, was
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involved in transporting PC into the bile (Smit
et al. 1993), and studies on the closely related
ABCB1 proved that these transporters can
translocate lipids across the plasma membrane
onto acceptors in the extracellular space (van
Helvoort et al. 1996). Finally, evidence was pro-
vided for passive, bidirectional movement of
lipids across the ER membrane and under
some conditions across the plasma membrane,
in which cases the responsible proteins have
not yet been unequivocally identified (Sanyal
and Menon 2009; Bevers and Williamson
2010). Thus, we now have a general picture of
how lipid asymmetry is generated, maintained,
and disrupted. However, there are still impor-
tant gaps in our knowledge. For example, the
transbilayer orientation of the sterols that
make up one-third of the lipids in eukaryotic
plasma membranes has still not been resolved
satisfactorily. Moreover, we do not understand
mechanistically how translocators and export-
ers work and how their activity is regulated.

TRANSBILAYER LIPID ASYMMETRY

Model Membrane Lipid Asymmetry

Gentle hydration of mixtures of membrane lip-
ids generally results in multilamellar liposomes
with a symmetrical distribution of the various
lipids across the bilayer. However, when the cur-
vature of the membranes is increased by son-
ication phospholipids with a small headgroup
tend to be enriched in the more highly curved
inner leaflet at the cost of the more cylindrical
PC (Berden et al. 1975). Asymmetric model
membranes can be prepared in several ways,
the simplest being the adjoining two lipid
monolayers of different chemical composition
into an “asymmetric black lipid membrane”
(Montal and Mueller 1972). Asymmetric ves-
icles have been formed by inserting a specific
lipid to preformed liposomes, spontaneously
(van Meer and Simons 1986) or via methyl-
beta-cyclodextrin (Cheng et al. 2009), or by
the exchange of short-chain lipids between lip-
osome populations (Pagano et al. 1981). Alter-
natively, phospholipid asymmetry was induced
by a transmembrane pH gradient (Hope et al.

1989). Asymmetric planar bilayers have also
been prepared on solid supports (Kiessling
et al. 2006).

Natural Membrane Lipid Asymmetry

Erythrocytes

An asymmetric distribution of phospholipids
was first established for erythrocytes. Erythro-
cytes are a convenient experimental model for
eukaryotic plasma membranes: because they
lack internal membranes, their lipids exist in
only two pools, that in the outer leaflet and
that in the inner leaflet. Quantitative experi-
ments are not complicated by a pool of lipids
in intracellular membranes, which may contain
some 85% of all cellular lipids (Griffiths et al.
1989). Initially, PE was found to be less accessi-
ble for an amino-reagent in intact erythrocytes
than in opened cells (Bretscher 1972). It was
then observed that most of the erythrocyte
sphingomyelin (SM) and PC were accessible
to exogenous phospholipases, whereas most of
the PE and essentially all PS were protected
(Verkleij et al. 1973). Whereas cholesterol has
been shown by many biophysical approaches
to have a preferential interaction with SM, indi-
rect evidence assigned most of it to the cytosolic
leaflet (see below) (Schroeder et al. 1991).

Viral Membranes

A number of membrane-enveloped viruses
obtains its membranes by a budding event
whereby the nucleocapsid has enveloped itself
in a part of the plasma membrane. Although
they contain virus specific membrane proteins,
their lipid comoposition and organization
may reflect that of the plasma membrane of
origin. It turns out that the transbilayer distri-
bution of the phospholipids is remarkably sim-
ilar to that found in the erythrocyte membrane
with most of the PS and PE inside (for a sum-
mary, see van Meer et al. 1981). These studies
have taught some additional lessons. (a) Most
SM was found to be accessible to exogenous
phospholipase C (Tsai and Lenard 1975) or
sphingomyelinase (Allan and Quinn 1989),
and it was concluded that all SM resides in the
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outer leaflet. However, only 40% of the SM was
calculated to be on the outside of the same Sem-
liki Forest virus when the rate of hydrolysis was
kinetically analyzed (van Meer et al. 1981), and
even less in influenza virus when analyzed by a
phospholipid transfer protein or phospholipase
C (Rothman et al. 1976). It has been reported
for liposomes that phospholipase C (Sundler
et al. 1978) and sphingomyelinase (Contreras
et al. 2003) can induce transbilayer transloca-
tion of inner leaflet lipids, unless the substrate
lipid is only a minor fraction of the lipids in
the outer leaflet. This may have been the case
in the Rothman study (see under b). Thus, the
orientation of SM remains to be settled. (b)
From the fact that Rothman and colleagues
found only 30% of the phospholipids in the
virus outer leaflet, they concluded that the outer
surface of influenza virus that budded from kid-
ney cells must have been enriched in glycolipids
(Rothman et al. 1976). Indeed, it was found
later that influenza virus buds from the apical
surface of polarized epithelial cells, and that
the apical surface of such cells is enriched in gly-
cosphingolipids (reviewed in Simons and van
Meer 1988). Experimentally, the sialic acid-
containing glycolipids (gangliosides) were
found exclusively on the outer viral surface
(Stoffel et al. 1975; Stoffel and Sorgo 1976) in
line with their presumed presence in the outer
leaflet of the cellular plasma membrane.

Nucleated Cells

The studies on viral membranes suggested that
the plasma membrane of nucleated cells dis-
plays an asymmetric distribution of lipids
similar to that of erythrocytes, albeit less out-
spoken. This was confirmed by studies on iso-
lated chromaffin granules (Buckland et al.
1978) and phagosomes (Sandra and Pagano
1978). In these membranes, which have their
cytosolic surface exposed to the medium, 70%
of the PE and only a minor proportion of the
SM (,20%) was found on the cytosolic surface.
Also, introducing the SM-specific equinatoxin
II into the cytosol caused labeling of the Golgi,
showing the presence of SM in the cytosolic
leaflet, but not of the plasma membrane (Bakrac

et al. 2010). The application of phospholipases
and amino-reagents on intact erythroleukemic
cells followed by plasma membrane isolation
led to the conclusion that 80%–85% of SM
and 10%–20% of PS was present in the outer
leaflet of these plasma membranes, with a
roughly equal distribution of PC, PE and
phosphatidylinositol (PI) (Rawyler et al. 1985).
Although PI is phosphorylated by cytosolic
kinases, significant fractions of various phos-
phoinositides have been found on the outer sur-
face of plasma membranes (Gascard et al. 1991;
Kale et al. 2010).

Independent but indirect evidence was
provided by studies on the lipid organization
in the apical and basolateral plasma membrane
domains of epithelial cells. It was found that the
tight junction that separates the two domains,
acts as a barrier to lipid diffusion in the outer
but not the cytosolic leaflet of the plasma mem-
brane bilayer (Dragsten et al. 1981; van Meer
and Simons 1986). As a consequence, if the
free diffusion of lipid molecules in the cytosolic
leaflet of the plasma membrane leads to an
identical lipid composition of the cytosolic leaf-
lets of both domains, the compositional differ-
ences between the two domains must have been
because of different compositions of the outer
leaflets of those domains. If the exoplasmic leaf-
let of the apical domain were predominantly
occupied by glycosphingolipids, as is probably
the case in intestinal cells (reviewed in Simons
and van Meer 1988), the phospholipids of the
apical domain would be mainly situated in its
cytosolic leaflet. The phospholipid composition
of the cytosolic leaflet of the basolateral mem-
brane would be identical with that of the apical
domain, and the distribution of the individual
phospholipid classes across the basolateral
membrane bilayer could be predicted from
the total phospholipid composition of the
basolateral membrane. For three independent
studies on the apical and basolateral lipid
composition (Kawai et al. 1974; van Meer and
Simons 1982, 1986) the calculation for the
two major phospholipid classes leads to the fol-
lowing numbers: 65%–90% of the PE and only
10%–25% of the PC would be localized in the
cytoplasmic leaflet.

Lipid Asymmetry
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Just like the findings in erythrocytes, also in
nucleated cells all (indirect) evidence points to
an enrichment of cholesterol in the cytosolic
leaflet of the plasma membrane (Mondal et al.
2009). This is counterintuitive because the
sphingolipids in the noncytosolic leaflet should
enrich the sterols there. In addition, at the
typical plasma membrane content of 40 mol%
cholesterol (and with a cholesterol surface area
half that of PC), restriction of the cholesterol
to one leaflet would yield a ratio cholesterol/
phospholipid in that leaflet of 2, which is the
limiting solubility of cholesterol in PC but
(far) above that of PE containing membranes
(Huang et al. 1999). Interestingly, sphingolipid-
sterol domains in one leaflet of the bilayer can
apparently be recognized by glycerophospho-
lipid-sterol domains on the opposite side (Col-
lins 2008; Collins and Keller 2008; Wan et al.
2008; Kiessling et al. 2009). The biophysical
details of the relevant interactions remain to
be resolved.

TRANSBILAYER LIPID TRANSLOCATION

Model Membrane Lipid Translocation

Lipid asymmetry in model membranes is stabi-
lized by the low tendency of the regular mem-
brane phospholipids to flip-flop across the
bilayer. However, the rate of spontaneous trans-
membrane translocation is very different for
various lipids. Generally, lipids with a large
or charged polar group, like the phospholipids
and glycolipids do not move across a PC
bilayer for hours, whereas lipids with a small
uncharged headgroup like cholesterol, diacyl-
glycerol (DG) or ceramide flip-flop on a (sub)-
second timescale (Lange et al. 1981; Bai and
Pagano 1997; López-Montero et al. 2005; Kra-
silnikov and Yuldasheva 2009). Some charged
lipids can translocate when their charge is neu-
tralized, for example by pH. Free fatty acids
readily move across membranes at neutral pH
(Hamilton 2003; Simard et al. 2008).

The low rate of translocation of PC across a
PC membrane (Kornberg and McConnell 1971)
is enhanced when defects are introduced in the
membrane. Such a defect can be the boundary

between liquid and solid phases at the phase
transition temperature (John et al. 2002), or
the presence of nonbilayer phases induced by,
for example, the addition of Ca2þ to a cardioli-
pin-containing bilayer (Gerritsen et al. 1980) or
by the generation of ceramide in membranes
(Contreras et al. 2003, 2005). In addition, it
has been observed that transmembrane pep-
tides can stimulate lipid flip-flop and that this
process strongly depended on the lipid compo-
sition of the liposomal bilayer (Kol et al. 2003).

Natural Membrane Lipid Translocation

Erythrocytes

The spontaneous rate of PC translocation across
the erythrocyte membrane was found to be slow
with a half-time of hours (Renooij et al.
1976), which was confirmed by phospholipid
exchange studies (Crain and Zilversmit 1980;
van Meer et al. 1980; van Meer and Op den
Kamp 1982). Subsequently, Seigneuret and
Devaux were able to show ATP-dependent trans-
location of spin-labeled PE and PS to the inner
leaflet of the erythrocyte membrane (Seigneuret
Devaux 1984). The responsible protein, the “flip-
pase,” was then identified as a member of the
P4 subfamily of P-type transporting ATPases:
ATPase II now known as ATP8A1 (Tang et al.
1996; Soupene and Kuypers 2006; Paulusma
and Oude Elferink 2010). In the meantime, evi-
dence was found to suggest that PC synthesized
on the inner surface of the erythrocyte membrane
by acylation of lysoPC was actively translocated
outward (Andrick et al. 1991). This “floppase”
activity may be because of an ABC-transporter
(Kälin et al. 2004).

Finally, it had been observed early on that
blood platelets display the same lipid asymme-
try across their plasma membrane as that of
erythrocytes (Schick et al. 1976; Chap et al.
1977). Disruption of this asymmetry during
platelet activation (Bevers et al. 1983) exposes
PS, which turns out to be crucial for blood
coagulation (Zwaal et al. 1977). The sudden
loss of lipid asymmetry is mediated by a “scram-
blase.” Various scramblase candidates have been
proposed but none has been validated (Bevers
and Williamson 2010).

G. van Meer
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Viral Membranes

The transbilayer translocation of PC in viral
membranes was found to be very slow: 7 h – sev-
eral days (Rothman et al. 1976; Shaw et al. 1979;
van Meer et al. 1981). There is presently no evi-
dence that viruses actively translocate lipids.

Nucleated Cells

Aminophospholipid Flippases. The erythro-
cyte aminophospholipid translocator ATP8A1
(Soupene and Kuypers 2006) was originally
purified from chromaffin granules (Tang et al.
1996), and 14 family members have been iden-
tified in mammals at present (Paulusma and
Oude Elferink 2010). Yeast expresses five P4
ATPases (Catty et al. 1997) and they are located
in the sterol- and sphingolipid rich membranes
of the late secretory and endocytotic pathways
(Pomorski et al. 2003). The P4-ATPases require
additional subunits for their proper intracellu-
lar localization and presumably for their activ-
ity, notably the CDC50 proteins (Kato et al.
2002; Saito et al. 2004; Lenoir et al. 2009).

The P4 ATPases clear PS from the surface
of blood cells: PS stimulates blood coagulation
by the activation of factor X and the subsequent
proteolytic production of thrombin (Bevers and
Williamson 2010). An unexpected function is
their involvement in vesicle budding. By mov-
ing lipid mass from the noncytosolic into the
cytosolic leaflet they increase the lateral pressure
in the cytosolic as compared to the noncytosolic
leaflet, which results in curving and vesicle bud-
ding. Evidence has been provided for a role in
endocytosis (Farge et al. 1999; Pomorski et al.
2003), and in vesicle transport from the Golgi
(Chen et al. 1999; Hua et al. 2002; Hua and Gra-
ham 2003). As is to be expected of a physiolog-
ically relevant system, the aminophospholipid
translocases are regulated by a network of ki-
nases (Nakano et al. 2008; Roelants et al. 2010),
and an asymmetry sensing system in yeast has
been reported (Ikeda et al. 2008).

ABC Transporters. Searching for the func-
tion of ABCB4, a close relative of the multidrug
transporter ABCB1 (P-glycoprotein, MDR1),
Smit and colleagues generated Abcb42/ – mice

and observed that these mice were unable to
secrete PC into the bile (Smit et al. 1993). Sub-
sequent studies (van Helvoort et al. 1996)
showed that both ABCB1 and ABCB4 were
capable of utilizing ATP to translocate a number
of short-chain analogs of membrane lipids like
PC, PE, SM, and the glycosphingolipid gluco-
sylceramide (GlcCer) across the plasma mem-
brane. It later turned out that ABCB1 only
translocates short-chain lipids, like platelet acti-
vating factor (PAF) (Ernest and Bello-Reuss
1999; Raggers et al. 2001), whereas ABCB4 is a
real PC exporter (Morita et al. 2007). Also, a
number of other members of the 50 human
ABC transporters have now been characterized
as being lipid exporters (van Meer et al. 2006;
Nagao et al. 2010). The most likely general
working mechanism of the mammalian ABC
transporters seems to be that they enclose
hydrophobic molecules into a binding site
that is open to the cytosolic leaflet. A conforma-
tional change opens this binding site to the
extracellular space (or the lumen of an intracel-
lular organelle). Molecules with a rather high
water solubility will diffuse out of the binding
pocket into the extracellular medium. This
would be the case for many drugs (ABCB1;
ABCC1) or lipids with high water solubility
like PAF (ABCB1; ABCB4) and sphingosine-1-
phosphate (ABCC1; ABCG2) (Takabe et al.
2010). More hydrophobic molecules will not
leave the binding pocket even after it opens
up to the extracellular side of the membrane
unless an extracellular (or lumenal) acceptor
is present. This acceptor can be a lipoprotein
(cholesterol, ABCA1) (Boadu et al. 2008); phos-
pholipids (Linsel-Nitschke et al. 2005), a bile
salt micelle (PC, ABCB4) (Morita et al. 2007);
plant sterol (ABCG5/G8) (Levy et al. 2007), a
lumenal membrane structure (PC, ABCA3;
glucosylceramide, ABCA12) Mitsutake et al.
2010), or a soluble enzyme complex (very long-
chain fatty acyl-SCoA, ABCD1-4) (Wanders
et al. 2007). It may be the case that from the
binding pocket on the outside of the plasma
membrane the lipid is able to move into the
noncytoplasmic leaflet when an acceptor is
not present. In that case, the ABC transporter
would function as a floppase, as was found in

Lipid Asymmetry
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a study on isolated erythrocytes in the absence
of any natural acceptor (Andrick et al. 1991;
Kälin et al. 2004). It is very unlikely that the
ABCtransportersgenerallyact asfloppasestrans-
locating their substrates into the outer layerof the
plasma membrane, after which this substrate
would move out of the membrane onto the
acceptor. In the latter model it is difficult to see
what would be the driving force to release the
substrate from the membrane, which is so nicely
explained in the “exporter” or “projection”
model (van Meer et al. 2006; Nagao et al. 2010).

Scramblases. In mammalian cells, one main
function of the P4 ATPases is to prevent PS from
appearing on the outer surface of the cell (Lev-
entis and Grinstein 2010). Indeed, after platelet
activation PS appears on the surface within sec-
onds. In addition, PS appears on the surface of
apoptotic cells where it is recognized by a PS
receptor on macrophages. This is followed by
ingestion of the cell corpse by the macrophage
(Fadok et al. 1992). The nonspecific and bid-
irectional scrambling of the membrane lipids
is induced by an elusive scramblase, which can
be activated in various ways (Bevers and Wil-
liamson 2010). Two independent mechanisms
may be involved (Schoenwaelder et al. 2009).
Unexpectedly, a P4-ATPase in Caenorhabditis
elegans, which should translocate PS to the
cytosolic surface, appears to be required for
the apoptotic appearance of PS on the cell sur-
face (Züllig et al. 2007). Evidence has been
provided that the activation of SM hydrolysis
during cell signaling is because of lipid scram-
bling which brings outer leaflet SM to the neu-
tral sphingomyelinase on the cytosolic surface
(Tepper et al. 2000). However, the story of SM
hydrolysis during signal transduction is more
complex because hydrolysis can be limited to a
special SM pool on a cytosolic surface (Andrieu
et al. 1996), and on the other side some stimuli
activate the acidic sphingomyelinase on the
outside of the cell (Lin et al. 2000). Some
20%–30% of the SM and PC were found to
be converted to ceramide and DG (Kolesnick
1989; Okazaki et al. 1989). This high concentra-
tion of ceramide might induce scrambling by its
nonbilayer propensity (Contreras et al. 2003).

Other Translocators. In Farber’s disease,
mutations in acid ceramidase result in lysoso-
mal storage of ceramides. Similarly, cholesterol
accumulates in lysosomes in Niemann-Pick
type C disease. It is unlikely that storage is
because of the absence of a translocator in the
lysosomal membrane because ceramide and
cholesterol readily flip across membranes spon-
taneously. Indeed, it is now concluded that
these lipids are present in vesicular structures
in the lysosomal lumen and are unable to enter
the lumenal leaflet of the lysosomal limiting
membrane. Ceramide needs to be degraded to
sphingosine and fatty acid. These can reach
the limiting membrane spontaneously, followed
by transmembrane translocation and release
into the cytosol. In contrast, to enter the lysoso-
mal membrane cholesterol needs the soluble
NPC2 protein and the membrane protein
NPC1 (Kolter and Sandhoff 2010). It has been
argued that NPC1 is also involved in translocat-
ing sphingosine out of the lysosome (Lloyd-
Evans et al. 2008): At the low lysosomal pH,
sphingosine is positively charged and does not
move spontaneously across the lysosomal mem-
brane. NPC1L1 is closely related to NPC1 and is
involved in moving cholesterol across the apical
membrane of intestinal cells. Probably, both
proteins are needed to transport cholesterol
across the glycocalyx that covers both the apical
epithelial surface and the lumenal side of the
lysosomal membrane.

Unlike plasma membranes, the ER mem-
brane displays high rates of transbilayer translo-
cation for all lipids tested (Herrmann et al.
1990; Buton et al. 1996, 2002). Evidence has
been provided that distinct proteins allow passive
translocation of glycerophospholipids and oligo-
saccharide diphosphate dolichols across the ER
(Sanyal et al. 2008) and photoreceptor mem-
branes (Menon et al. 2011). The conclusion
that the yeast protein RFT1 is required for the
translocation of these glycophosphodolichols
(Helenius et al. 2002) was not supported by other
data (Rush et al. 2009), suggesting there may be
more than one mechanism. One other class of
lipids that translocates across the ER membrane
is the class of simple glycosphingolipids (Buton
et al. 2002). The simple glycosphingolipid
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GlcCer is synthesized on the cytosolic side of
the Golgi but is converted to complex glyco-
sphingolipids in the Golgi lumen. Evidence has
been presented to suggest that GlcCer is trans-
ported back to the ER to cross the membrane.
Interestingly, galactosylceramide is synthesized
in the ER lumen, and appeared to mix with the
GlcCer pool in the cell according to their similar
kinetics in various intracellular transport steps
(Halter et al. 2007).

Bacterial and Mitochondrial Membranes

The cytoplasmic membrane of bacteria is a
biogenic membrane like the ER. Lipids rapidly
flip across it (Rothman and Kennedy 1977).
This property is maintained in proteoliposomes
prepared from these membranes, and not in
protein-free membranes (Kubelt et al. 2002;
Watkins and Menon 2002), but the responsible
protein has so far escaped identification. Inter-
estingly, two distinct but interchangeable mech-
anisms were identified that are required for
flipping lipid-linked oligosaccharides to the
outside of the cytoplasmic membrane (Alaimo
et al. 2006). Surprisingly, one was a passive sys-
tem and the other an ABC transporter. A dif-
ferent ABC transporter, MsbA, translocates
nascent LPS and phospholipids to the exoplas-
mic surface (Doerrler et al. 2004) as was recently
shown in a reconstituted system (Eckford and
Sharom 2010). An independent bacterial protein
translocates phospholipids and lysophospho-
lipids (Harvat et al. 2005; Tefsen et al. 2005).
As could be expected a rapid (minutes) bidirec-
tional and energy-independent phospholipid
translocation was observed across mitochondrial
inner membrane (Gallet et al. 1999).

PERSPECTIVES

Even after nearly 40 years of intense research on
the transbilayer organization of lipids, there are
still dramatic gaps in our knowledge. It is for
example unclear how cholesterol is distributed,
and as argued above the methodology by which
SM has been assigned to the noncytosolic leaflet
is potentially flawed. Also the molecular mech-
anism by which the P4-ATPases and the ABC
transporters move lipids across membranes is

unknown, although the tremendous progress
in membrane protein structure determination
provides hope that such data will also explain
the specificity of these systems. Lipid asymme-
try and transmembrane translocation are not
an isolated phenomenon, but a central aspect
of the lipid economy of the cell. The process
feeds into vesicle transport, protein recruitment
and function, signal transduction, and phys-
iological issues like cell death and blood clot-
ting. The field needs input from biochemists,
biophysicists, structural and cell biologists, phys-
iologists, and clinicians: It is a great challenge
to study on the one hand the molecular details
of a lipid translocator and on the other hand
extend this to finding a cure for hearing disor-
ders (Stapelbroek et al. 2009). It is time to
apply chemical biology and systems approaches
to the unsolved questions. The field deserves
it. After all, isn’t it dynamic asymmetry that
characterizes life?
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